ECCurve.F2m, ECCurve.Fp| Constructor and Description |
|---|
F2m(int m,
int k,
BigInteger a,
BigInteger b)
Constructor for Trinomial Polynomial Basis (TPB).
|
F2m(int m,
int k,
BigInteger a,
BigInteger b,
BigInteger n,
BigInteger h)
Constructor for Trinomial Polynomial Basis (TPB).
|
F2m(int m,
int k1,
int k2,
int k3,
BigInteger a,
BigInteger b)
Constructor for Pentanomial Polynomial Basis (PPB).
|
F2m(int m,
int k1,
int k2,
int k3,
BigInteger a,
BigInteger b,
BigInteger n,
BigInteger h)
Constructor for Pentanomial Polynomial Basis (PPB).
|
| Modifier and Type | Method and Description |
|---|---|
ECPoint |
createPoint(BigInteger x,
BigInteger y,
boolean withCompression) |
ECPoint |
decodePoint(byte[] encoded) |
boolean |
equals(Object anObject) |
ECFieldElement |
fromBigInteger(BigInteger x) |
int |
getFieldSize() |
BigInteger |
getH() |
ECPoint |
getInfinity() |
int |
getK1() |
int |
getK2() |
int |
getK3() |
int |
getM() |
BigInteger |
getN() |
int |
hashCode() |
boolean |
isKoblitz()
Returns true if this is a Koblitz curve (ABC curve).
|
boolean |
isTrinomial()
Return true if curve uses a Trinomial basis.
|
public F2m(int m,
int k,
BigInteger a,
BigInteger b)
m - The exponent m of
F2m.k - The integer k where xm +
xk + 1 represents the reduction
polynomial f(z).a - The coefficient a in the Weierstrass equation
for non-supersingular elliptic curves over
F2m.b - The coefficient b in the Weierstrass equation
for non-supersingular elliptic curves over
F2m.public F2m(int m,
int k,
BigInteger a,
BigInteger b,
BigInteger n,
BigInteger h)
m - The exponent m of
F2m.k - The integer k where xm +
xk + 1 represents the reduction
polynomial f(z).a - The coefficient a in the Weierstrass equation
for non-supersingular elliptic curves over
F2m.b - The coefficient b in the Weierstrass equation
for non-supersingular elliptic curves over
F2m.n - The order of the main subgroup of the elliptic curve.h - The cofactor of the elliptic curve, i.e.
#Ea(F2m) = h * n.public F2m(int m,
int k1,
int k2,
int k3,
BigInteger a,
BigInteger b)
m - The exponent m of
F2m.k1 - The integer k1 where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z).k2 - The integer k2 where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z).k3 - The integer k3 where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z).a - The coefficient a in the Weierstrass equation
for non-supersingular elliptic curves over
F2m.b - The coefficient b in the Weierstrass equation
for non-supersingular elliptic curves over
F2m.public F2m(int m,
int k1,
int k2,
int k3,
BigInteger a,
BigInteger b,
BigInteger n,
BigInteger h)
m - The exponent m of
F2m.k1 - The integer k1 where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z).k2 - The integer k2 where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z).k3 - The integer k3 where xm +
xk3 + xk2 + xk1 + 1
represents the reduction polynomial f(z).a - The coefficient a in the Weierstrass equation
for non-supersingular elliptic curves over
F2m.b - The coefficient b in the Weierstrass equation
for non-supersingular elliptic curves over
F2m.n - The order of the main subgroup of the elliptic curve.h - The cofactor of the elliptic curve, i.e.
#Ea(F2m) = h * n.public int getFieldSize()
getFieldSize in class ECCurvepublic ECFieldElement fromBigInteger(BigInteger x)
fromBigInteger in class ECCurvepublic ECPoint createPoint(BigInteger x, BigInteger y, boolean withCompression)
createPoint in class ECCurvepublic ECPoint decodePoint(byte[] encoded)
decodePoint in class ECCurvepublic ECPoint getInfinity()
getInfinity in class ECCurvepublic boolean isKoblitz()
public int getM()
public boolean isTrinomial()
public int getK1()
public int getK2()
public int getK3()
public BigInteger getN()
public BigInteger getH()
Copyright © 2015. All rights reserved.